Computing the Dynamics of Complex Singularities of Nonlinear PDEs
نویسنده
چکیده
A two-step strategy is proposed for the computation of singularities in nonlinear PDEs. The first step is the numerical solution of the PDE using a Fourier spectral method; the second step involves numerical analytical continuation into the complex plane using the epsilon algorithm to sum the Fourier series. Test examples include the inviscid Burgers and nonlinear heat equations, as well as a transport equation involving the Hilbert transform. Numerical results, including Web animations that show the dynamics of the singularities in the complex plane, are presented.
منابع مشابه
Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملHow to Solve Smooth Nonlinear PDEs in Algebras of Generalized Functions with Dense Singularities
As a significant strengthening of properties of earlier algebras of generalized functions, here are presented classes of such algebras which can deal with dense singularities. In fact, the cardinal of the set of singular points can be larger than that of the nonsingular points. This large class of singularities allows the solution of large classes of smooth nonlinear PDEs. This in certain ways ...
متن کاملA New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 2 شماره
صفحات -
تاریخ انتشار 2003